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FORMATION OF A 1,2-DIOXANE BY ELECTRON-TRANSFER PHOTOOXYGENATION OF 1,1-DI(p—ANISYL)ETHYLENE
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Summary: A new mode of electron-transfer photooxygenation is shown to occur with the title
compound (4)}. With this electron-rich ethylene derivative, DCA-sensitization
in acetonitrile gives rise to the quantitative formation of a cyclic peroxide (5) by

cycloaddition of 2 molecules of 4 and 1 molecule of 02.A mechanism is outlined for

this reaction.

Electron-transfer photooxygenation has received much attention during the last
six year‘s1. Olefins, acetylenes, sulfides, and aryl-substituted saturated three-membered ring

compounds are oxidized on irradiation in O _-saturated polar solvents in the presence of

2
cyano-aromatics as photosensitizers.

As with other phenyl-substituted ethylenes, Eriksen and Foote2 showed that 9,710-
dicyanoanthracene (DCA) photosensitized oxygenation of 1,1-diphenylethylene (1) yields the
typical electron-transfer photooxygenation products, carbonyl compounds and oxiranes, in this

case benzophenone (2) and 2,2-diphenyloxirane (3).

/\
Ph2C=CH2 + DCA/hv/O2 —W Ph20=O + PhZC—CH2

1 2 3

We now wish to report on the DCA-sensitized oxygenation of 1,1-di(p-anisyl)-
ethylene (4) in oxygen-saturated acetonitrile3which exhibits a novel mode of electron-

transfer photooxygenation.

4 absorbs exactly half a molecule of oxygen. If the reaction solution is left

for some time in the dark, the cyclic peroxile 5 precipitates quantitatively from the

5a,b

solution . The solution itself contains 1less than 3% of p,p'-dimethoxybenzophenone (6)

and less than 1% of the starting material (i)Scj.
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2 Ar,C=CH, + DCA/hv/O, ———> Ar,C CAr, + Ar, C=0
2 2 2 2 2 2
CHLON \ /
0—0
4 5 (>97%) 6 (< 3%)

Ar = p—CH30—06H4—

The structure of the cyclic peroxide 5 is unequivocally that of 3,3,6,6-tetra-
{p-anisyl)-1,2-dioxane as revealed by elemental analysis, molecular weight and spectroscopic

data as well as by catalytic hydrogenation and subsequent treatment with sulfuric acid:

+ H,80
2774
_______> — =
5+ Pd—C/H2 Ar‘ZOCHZCHzCAr‘2 ——— Ar‘ZC\ /CAr‘Z —_— APZC—CH—CH CAr*2
CHZ00,Et I | - HO o] (= H0)
OH OH
I

Ar = p—CHSO—C6H 4

Diol 7 expected as the hydrogenation product of 5 is not isolated under our reac-

tion conditions; 7 eliminates one molecule of water to form the previously unknown tetra-
Qa,b

hydrofuran derivative . Heating of 8 in acetic acid in the presence of H2804 yields the

1,3~-butadiene derivative 290 .

Singlet oxygen is not responsible for the production of 5 and 6 from ﬂﬁ.
Since 4 quenches the fluorescence of DCA considerably, it is safe to assume that interaction
of 1DCA* (the excited singlet state of DCA) with 4 leads to an electron transfer from
4 to 1DCA* to form ﬁf and DCA* ; phenyl-substituted ethylenes which are less electron-dona—

, 1

ting molecules than 4, were unequivocally shown to undergo such pr‘ocesses2 . Interaction of

DCA* with 3O2 yields DCA and 027, the superoxide anion radical; reaction of the latter with
f: gives rise to products 2 and §2. In the case of ﬁi-— , interaction with 02T to give 6 is ob-
viously much slower than with 4 and has only a chance after 4 has decreased to rather

low concentrations. Interaction of ﬂf with 4 should yield a more stable radical cation

(4—4)T . Such dimerizations have been observed in O2 —free solutions of p—methoxystyr‘ene13

?

_1_14, and some other electron-rich ole’r‘ins‘]5
CH,CH 3 CH,CH
/ 1
1 x t4 - + 7 4 Ar_C § \Z\CAr‘ ——->+ 02 APZC\ ° Z\CAFZ
DCA + hy —> DCA ——> DCA- + 4° —> 27 £ 2 (b) 0-0. +
3 + _ayto_-
+ O2 l (4-4) (4-4) 02_
BCA + 0 - + 4 o) Y‘d) + DCA~
6 (a)y + QZ i
= 5 5+ 4 5 + DCA
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We may consider several pathways for the production of 5 from (4—4)T: first, in-

teraction with O, should lead directly to 5 (path (a)); second, interaction with 3O should

2 2

lead to another radical cation, (4-4)+02'_ (path (b)), which on electron transfer from DCA-
forms 5 and regenerates DCA (path (d)}}; third, (4—-4)+02'_ is formed via path (b), but this
time it reacts with another molecule of 4 to give 5 along with a new f-L (path (c)). All path-
ways account for the fact that two molecules of 4 are consumed per one molecule of oxygen.
Paths (a) and (b)/(d) should proceed with limiting quantum yields of 2 for the disappearance
of 4. Path (b)/(c), however, represents a chain reaction the quantum yield of which may well
exceed a value of 2. The radical chain reaction should be terminated by path (d).

The ratio of oxygen-uptake rates of 4 and trans-stilbene determined at same con-
centrations (2-‘10_2 M) equals about 12. The quantum yield of trans-stilbene disappearance at
this concentration is estimated from Foote's paper‘2 to be about 0.4. With this value,
the quantum yield of Oz—consumption by 4 is about 5, and, consequently, the quantum yield of
disappearance of 4 should be about 10. The production of 5 via a radical chain reaction is,

therefore, suggested. The sensitivity of the production of 5 to impurities7 is also compa-

tible with this mechanism.

Investigation of 1,2-dioxane formation by electron-transfer photooxygenation of
other electron-rich ethylenes is presently carried out at our laboratory.
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